Lanthanum–molybdenum multilayer mirrors for attosecond pulses between 80 and 130 eV

نویسندگان

  • M Hofstetter
  • A Aquila
  • M Schultze
  • A Guggenmos
  • S Yang
  • E Gullikson
  • M Huth
  • B Nickel
  • J Gagnon
  • V S Yakovlev
  • E Goulielmakis
  • F Krausz
  • U Kleineberg
چکیده

A novel multilayer material system consisting of lanthanum and molybdenum nano-layers for both broadband and highly reflecting multilayer mirrors in the energy range between 80 and 130 eV is presented. The simulation and design of these multilayers were based on an improved set of optical constants, which were recorded by extreme ultraviolet (XUV)/soft-x-ray absorption measurements on freestanding lanthanum nano-films between 30 eV and 1.3 keV. Lanthanum–molybdenum (La/Mo) multilayer mirrors were produced by ion-beam sputtering and characterized through both x-ray and XUV reflectivity measurements. We demonstrate the ability to precisely simulate and realize aperiodic stacks. Their stability against ambient air conditions is demonstrated. Finally, the La/Mo mirrors were used in the generation of single attosecond pulses from high-harmonic cut-off spectra above 100 eV. Isolated 200 attosecond-long pulses were measured by XUV-pump/IR-probe 6 Author to whom any correspondence should be addressed. New Journal of Physics 13 (2011) 063038 1367-2630/11/063038+15$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aperiodic CrSc multilayer mirrors for attosecond water window pulses.

Extending single attosecond pulse technology from currently sub-200 eV to the so called 'water window' spectral range may enable for the first time the unique investigation of ultrafast electronic processes within the core states of bio-molecules as proteins or other organic materials. Aperiodic multilayer mirrors serve as key components to shape these attosecond pulses with a high degree of fr...

متن کامل

Realization and characterization of an XUV multilayer coating for attosecond pulses.

The experimental characterization of an aperiodic reflecting multilayer (ML) structure designed to reflect and compress attosecond pulses in the extreme ultraviolet spectral region is presented. The MLs are designed for the 75-105 eV spectral interval with suitable reflectance and phase behavior, in particular high total spectral reflectivity coupled with very wide bandwidth and spectral phase ...

متن کامل

Design and characterization of extreme-ultraviolet broadband mirrors for attosecond science.

A novel multilayer mirror was designed and fabricated based on a recently developed three-material technology aimed both at reaching reflectivities of about 20% and at controlling dispersion over a bandwidth covering photon energies between 35 and 50 eV. The spectral phase upon reflection was retrieved by measuring interferences in a two-color ionization process using high-order harmonics produ...

متن کامل

Few-cycle driven relativistically oscillating plasma mirrors: a source of intense isolated attosecond pulses.

The conditions required for the production of isolated attosecond pulses from relativistically oscillating mirrors (ROM) are investigated numerically and experimentally. In simulations, carrier-envelope-phase-stabilized three-cycle pulses are found to be sufficient to produce isolated attosecond pulses, while two-cycle pulses will predominantly lead to isolated attosecond pulses even in the abs...

متن کامل

Compression of attosecond harmonic pulses by extreme-ultraviolet chirped mirrors.

In the race toward attosecond pulses, for which high-order harmonics generated in rare gases are the best candidates, both the harmonic spectral range and the spectral phase have to be controlled. We demonstrate that multilayer extreme-ultraviolet chirped mirrors can be numerically optimized and designed to compensate for the intrinsic harmonic chirp that was recently discovered and that is res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011